Cart (Loading....) | Create Account
Close category search window
 

Design and implementation of a robust controller for a synchronous reluctance drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ming-Tsan Lin ; Dept. of Electr. Eng., Tung Nan Inst. of Technol., Taiwan ; Tian-Hua Liu

A robust controller design for a synchronous reluctance drive system is presented. Based on a simplified model of the system, a robust position controller has been derived. A digital signal processor (DSP), TNO-320-C30, is used to implement the control algorithm. Furthermore, all the current, velocity, and position control loops are executed by the DSP. The system, as a result, is very flexible. Although the hardware circuit of the system is very simple, the synchronous reluctance drive system can accurately control a one-axis table. In addition, the system also has good transient response, load disturbance response, and tracking ability. Several experimental results validate the theoretical analysis

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:37 ,  Issue: 4 )

Date of Publication:

Oct 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.