Cart (Loading....) | Create Account
Close category search window
 

Adaptive recurrent-neural-network control for linear induction motor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rong-Jong Wai ; Dept. of Electr. Eng., Yuan Ze Univ., Chung Li, Taiwan ; Faa-Jeng Lin

In this study an adaptive recurrent-neural-network controller (ARNNC) is proposed to control a linear induction motor (LIM) servo drive. First, the secondary flux of the LIM is estimated with an adaptive flux observer on the stationary reference frame and the feedback linearization theory is used to decouple the thrust force and the flux amplitude of the LIM. Then, an ARNNC is proposed to control the mover of the LIM for periodic motion. In the proposed controller, the LIM servo drive system is identified by a recurrent-neural-network identifier (RNNI) to provide the sensitivity information of the drive system to an adaptive controller. The backpropagation algorithm is used to train the RNNI on line. Moreover, to guarantee the convergence of identification and tracking errors, analytical methods based on a discrete-type Lyapunov function are proposed to determine the varied learning rates of the RNNI and the optimal learning rate of the adaptive controller. The effectiveness of the proposed control scheme is verified by both the simulated and experimental results. Furthermore, the advantages of the proposed control system are indicated in comparison with the sliding mode control system

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:37 ,  Issue: 4 )

Date of Publication:

Oct 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.