By Topic

Signal processing of wide bandwidth and wide beamwidth P-3 SAR data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. Soumekh ; Dept. of Electr. Eng., State Univ. of New York, Buffalo, NY, USA ; D. A. Nobles ; M. C. Wicks ; G. R. J. Genello

This research is concerned with multidimensional signal processing and image formation with FOliage PENetrating (FOPEN) airborne radar data which were collected by a Navy P-3 ultra wideband (UWB) radar in 1995. The digital signal processors that were developed for the P-3 data commonly used a radar beamwidth angle that was limited to 35 deg. Provided that the P-3 radar beamwidth angle (after slow-time FIR filtering and 6:1 decimation) was 35 deg, the P-3 signal aperture radar (SAR) system would approximately yield alias-free data in the slow-time Doppler domain. We provide an analysis here of the slow-time Doppler properties of the P-3 SAR system. This study indicates that the P-3 database possesses a 50 deg beamwidth angle within the entire [215, 730] MHz band of the P-3 radar. We show that the 50-degree beamwidth limit is imposed by the radar (radial) range swath gate; a larger beamwidth measurements would be possible with a larger range swath gate. The 50-degree beamwidth of the P-3 system results in slow-time Doppler aliasing within the frequency band of [444, 730] MHz. We outline a slow-time processing of the P-3 data to minimize the Doppler aliasing. The images which are formed via this method are shown to be superior in quality to the images which are formed via the conventional P-3 processor. In the presentation, we also introduce a method for converting the P-3 deramped (range-compressed) data into its alias-free baseband echoed data; the utility of this conversion for suppressing radio frequency interference signals is shown

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:37 ,  Issue: 4 )