By Topic

Convergence and performance analysis of the normalized LMS algorithm with uncorrelated Gaussian data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Tarrab ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; A. Feuer

It is demonstrated that the normalized least mean square (NLMS) algorithm can be viewed as a modification of the widely used LMS algorithm. The NLMS is shown to have an important advantage over the LMS, which is that its convergence is independent of environmental changes. In addition, the authors present a comprehensive study of the first and second-order behavior in the NLMS algorithm. They show that the NLMS algorithm exhibits significant improvement over the LMS algorithm in convergence rate, while its steady-state performance is considerably worse

Published in:

IEEE Transactions on Information Theory  (Volume:34 ,  Issue: 4 )