By Topic

Adaptive closed-loop power control with quantized feedback and loop filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Su, H.-J. ; Lucent Technol. Bell Labs, Holmdel, NJ, USA ; Geraniotis, E.

Power control is important in maintaining the communication link quality under fading and interference situations. In recent years, research on power control has been conducted toward reducing power consumption while maintaining reliable link quality. These previous works, however, did not try to optimize power control algorithms under practical constraints. In this paper, we first observe and provide some insights into the previous works on different aspects of power control schemes. These observations motivate us to propose a new power control scheme which has several novel features: it uses an adaptive optimal quantizer at the receiver for transmitting discrete feedback information and an adaptive quantization scaler/restorer followed by a loop filter at the transmitter. Optimal quantization minimizes the feedback information loss and the additional power control error caused by it, while the loop filter can be designed to achieve the lowest power control error. Optimization of the loop filter requires some computational power. Fortunately, filter self-design capability can be implemented. In that case, closed-loop power control can be seen as an instance of a general channel identification problem. Intuitive explanation, together with analysis and simulation results of the proposed scheme will be given

Published in:

Wireless Communications, IEEE Transactions on  (Volume:1 ,  Issue: 1 )