By Topic

Performance and implementation of dynamic frequency hopping in limited-bandwidth cellular systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kostic, Z. ; AT&T Labs.-Res., Middletown, NJ, USA ; Sollenberger, N.

We evaluate the performance of a previously proposed dynamic frequency hopping (DFH) when applied to cellular systems with a limited total bandwidth. We also illustrate a practical implementation for DFH deployment using network-assisted resource allocation (NARA). The performance evaluation is accomplished by system-level simulations of a system with 12 carriers and 1/1 frequency reuse, based on the EDGE-Compact specification. Voice-only circuit-switched operation is assumed. The fading channel, multicell interference, voice activity, and antenna sectorization are modeled. We present the performance of dynamic frequency hopping compared to random frequency hopping and fixed channel assignment by showing the distributions of the word error rates. The sensitivity to occupancy, Rayleigh fading assumptions, number of carriers, voice activity, and measurement errors are studied. We also compare the uplink and downlink performance. The results indicate that DFH can significantly improve the performance compared to random frequency hopping. For example, at a 2 % frame error rate with 90% coverage, the capacity improvement of DFH is almost 100% when compared with fixed channel assignment, and about 50% when compared to random frequency hopping. The amount of improvement for the uplink direction is smaller than the improvement for the downlink direction, especially for higher occupancies

Published in:

Wireless Communications, IEEE Transactions on  (Volume:1 ,  Issue: 1 )