By Topic

An adaptive classifier design for high-dimensional data analysis with a limited training data set

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Q. Jackson ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; D. A. Landgrebe

Proposes a self-learning and self-improving adaptive classifier to mitigate the problem of small training sample size that can severely affect the recognition accuracy of classifiers when the dimensionality of the multispectral data is high. This proposed adaptive classifier utilizes classified samples (referred to as semilabeled samples) in addition to original training samples iteratively. In order to control the influence of semilabeled samples, the proposed method gives full weight to the training samples and reduced weight to semilabeled samples. The authors show that by using additional semilabeled samples that are available without extra cost, the additional class label information may be extracted and utilized to enhance statistics estimation and hence improve the classifier performance, and therefore the Hughes phenomenon (peak phenomenon) may be mitigated. Experimental results show this proposed adaptive classifier can improve the classification accuracy as well as representation of estimated statistics significantly

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:39 ,  Issue: 12 )