Cart (Loading....) | Create Account
Close category search window
 

Effect of Cu stud microstructure and electroplating process on intermetallic compounds growth and reliability of flip-chip solder bump

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Guo-Wei Xiao ; Dept. of Electr. & Electron. Eng., Hong Kong Univ. of Sci. & Technol., Kowloon, China ; Chan, Philip C.H. ; Teng, A. ; Jian Cai
more authors

In electroplating-based flip-chip technology, the Cu stud and solder deposition processes are two of the most important factors affecting the reliability of solder joints. The growth of Cu-Sn intermetallic compounds (IMC) also plays a critical role. In this paper, the effect of Cu stud surface roughness and microstructures on the reliability of solder joint was studied. The surface roughness of the Cu stud was increased as the Cu electroplating current density increased. The microstructural morphology of the Cu-Sn IMC layer was affected by Cu stud surface structure. We found the growth rate of IMC layer increased with the increasing of Cu stud grain size and surface roughness during aging test. The growth kinetics of Cu-Sn intermetallic compound formation for 63Sn/37Pb solder followed the Arrhenius equation with activation energy varied from 0.78 eV to 1.14 eV. The ratios of Cu3 Sn layer thickness to the total Cu-Sn IMC layer thickness was in the range of 0.5 to 0.15 for various Cu microstructures at 150°C during thermal aging test. The shear strength of solder bump was measured after thermal aging and temperature/humidity tests. The relationship between electroplating process and reliability of solder joints was established. The failure mode of solder joints was also analyzed

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:24 ,  Issue: 4 )

Date of Publication:

Dec 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.