By Topic

Segmenting high-frequency intracardiac ultrasound images of myocardium into infarcted, ischemic, and normal regions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaohui Hao ; Dept. of Physiol. & Biophys., Mayo Found., Rochester, MN, USA ; Bruce, C.J. ; Pislaru, C. ; Greenleaf, J.F.

Segmenting abnormal from normal myocardium using high-frequency intracardiac echocardiography (ICE) images presents new challenges for image processing. Gray-level intensity and texture features of ICE images of myocardium with the same structural/perfusion properties differ. This significant limitation conflicts with the fundamental assumption on which existing segmentation techniques are based. This paper describes a new seeded region growing method to overcome the limitations of the existing segmentation techniques. Three criteria are used for region growing control: 1) Each pixel is merged into the globally closest region in the multifeature space. 2) "Geographic similarity" is introduced to overcome the problem that myocardial tissue, despite having the same property (i.e., perfusion status), may be segmented into several different regions using existing segmentation methods. 3) "Equal opportunity competence" criterion is employed making results independent of processing order. This novel segmentation method is applied to in vivo intracardiac ultrasound images using pathology as the reference method for the ground truth. The corresponding results demonstrate that this method is reliable and effective.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:20 ,  Issue: 12 )