By Topic

Feature extraction and classification of dynamic contrast-enhanced T2*-weighted breast image data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
G. Torheim ; Dept. of Anesthesia & Med. Imaging, Norwegian Univ. of Sci. & Technol., Trondheim, Norway ; F. Godtliebsen ; D. Axelson ; K. A. Kvistad
more authors

The relatively low specificity of dynamic contrast-enhanced T1-weighted magnetic resonance imaging (MR) imaging of breast cancer has lead several groups to investigate different approaches to data acquisition, one of them being the use of rapid T2*-weighted imaging. Analyses of such data are difficult due to susceptibility artifacts and breathing motion. One-hundred-twenty-seven patients with breast tumors underwent MR examination with rapid, single-slice T2*-weighted imaging of the tumor. Different methods for classifying the image data set using leave-one-out cross validation were tested. Furthermore, a semi-automatic region of interest (ROI) definition tool was presented and compared with manual ROI definitions from a previous study. Finally, pixel-by-pixel analysis was done and compared with ROI analysis. The analyses were done with and without noise reduction. The minimum enhancement parameter was the most robust and accurate of the parameters tested. The semi-automatic ROI definition method was fast and produced similar results as the manually defined ROIs. Noise reduction improved both sensitivity and specificity, but the improvement was not statistically significant. The pixel-based analysis methods used in the present study did not improve classification results. In conclusion, analysis of T2*-weighted breast images can be done in a rapid and robust manner by using semi-automatic ROI definition tools in combination with noise reduction. Minimum enhancement gives an indication of malignancy in T2*-weighted imaging.

Published in:

IEEE Transactions on Medical Imaging  (Volume:20 ,  Issue: 12 )