By Topic

Synthesis of hardware models in C with pointers and complex data structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Semeria, L. ; Clearwater Networks Inc., Los Gatos, CA, USA ; Sato, K. ; De Micheli, G.

One of the greatest challenges in a C/C++-based design methodology is efficiently mapping C/C++ models into hardware. Many networking and multimedia applications implemented in hardware or mixed hardware/software systems now use complex data structures stored in multiple memories, so many C/C++ features that were originally designed for software applications are now making their way into hardware. Such features include dynamic memory allocation and pointers for managing data. We present a solution for efficiently mapping arbitrary C code with pointers and malloc/free into hardware. Our solution, which fits current memory management methodologies, instantiates an application-specific hardware memory allocator coupled with a memory architecture. Our work also supports the resolution of pointers without restriction on the data structures. We present an implementation based on the SUIF framework along with case studies such as the realization of a video filter and an ATM segmentation engine.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:9 ,  Issue: 6 )