By Topic

LiNbO3 optical waveguides formed in a new proton source

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Passaro, V.M.N. ; Optoelectronics Lab., Politecnico di Bari, Italy ; Armenise, M.N. ; Nesheva, D. ; Savatinova, I.T.
more authors

Proton-exchanged planar waveguides have been fabricated on Z-cut and X-cut lithium niobate crystals by using a new proton source formed by a mixture of benzoic and adipic acids. Waveguide index profiles and optical characteristics have been obtained at different values of the adipic-benzoic acid concentration ratio. The samples have been structurally characterized by Raman and infrared (IR) absorption spectroscopy and double-crystal X-ray diffraction. Good quality samples have been fabricated by using 30 mol% ratio dilution, showing very low scattering levels (<0.1 dB/cm), relatively high electrooptic coefficient (r33=0.88 pm/V), and low relative percentage of interstitial protons (26%). The main factor limiting the waveguide optical properties is the substitutional-interstitial proton ratio, which can be easily controlled to produce good quality waveguides. A demonstration of the repeatability of the exchange process in the acid mixture is also provided

Published in:

Lightwave Technology, Journal of  (Volume:20 ,  Issue: 1 )