Cart (Loading....) | Create Account
Close category search window
 

Impact of gate-poly grain structure on the gate-oxide reliability [CMOS]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kamgar, Avid ; New Jersey Inst. of Technol., Newark, NJ, USA ; Vaidya, H.M. ; Baumann, F.H. ; Nakahara, S.

Time dependent dielectric breakdown of thin oxides, 1.5 to 5.0 nm has been studied for different gate-poly grain structures. The poly grain was varied by the poly deposition, and the source-drain (S/D) rapid thermal anneal (RTA) conditions. The study, which was done on fully fabricated CMOS devices, showed substantial reliability degradation in thin gate oxides (below 2.0 nm), when using S/D RTA temperatures above 1000/spl deg/C. The results can be explained in terms of the interface roughness at the gate poly interface induced by the S/D RTA temperature above the viscoelastic point of the SiO/sub 2/. A possible mechanism for the drastic reliability degradation in thin gate oxides, is the protrusion of poly grains into the softening oxide at high temperature.

Published in:

Electron Device Letters, IEEE  (Volume:23 ,  Issue: 1 )

Date of Publication:

Jan. 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.