Cart (Loading....) | Create Account
Close category search window

Improved device linearity of AlGaAs/InGaAs HFETs by a second mesa etching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chiu, Hsien-Chin ; Dept. of Electr. Eng., Nat. Central Univ., Chung-li, Taiwan ; Shih-Cheng Yang ; Chien, Feng-Tso ; Chan, Yi-Jen

The conventional mesa isolation process in AlGaAs/InGaAs heterostructure FETs results in the gate contacting the exposed highly doped region at the mesa sidewalls, forming a parasitic gate leakage path. In this work, we suppress the gate leakage from the mesa-sidewall and enhance microwave power performance by performing an additional second mesa etching. The device gate leakage characteristics under high-input power swing are particularly investigated to reveal an improvement in device linearity, which is sensitive to the sidewall gate leakage. This modified device (M-HFETs) provides not only a higher linear RF output power but also a lower IM3 product than those characteristics in conventional HFETs.

Published in:

Electron Device Letters, IEEE  (Volume:23 ,  Issue: 1 )

Date of Publication:

Jan. 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.