Cart (Loading....) | Create Account
Close category search window

A method to extract mobility degradation and total series resistance of fully-depleted SOI MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Garcia Sanchez, F.J. ; Laboratorio de Electronica del Estado Solido, Univ. Simon Bolivar, Caracas, Venezuela ; Ortiz-Conde, A. ; Cerdeira, A. ; Estrada, M.
more authors

Free-carrier mobility degradation in the channel and drain/source series resistance are two important parameters limiting the performance of MOS devices. In this paper, we present a method to extract these parameters from the drain current versus gate voltage characteristics of fully-depleted (FD) SOI MOSFETs operating in the saturation region. This method is developed based on an integration function which reduces errors associated with the extraction procedure and on the DC characteristics of MOS devices having several different channel lengths. Simulation results and measured data of FD SOI MOSFETs are used to test and verify the method developed

Published in:

Electron Devices, IEEE Transactions on  (Volume:49 ,  Issue: 1 )

Date of Publication:

Jan 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.