Cart (Loading....) | Create Account
Close category search window
 

Detection algorithms for hyperspectral imaging applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Manolakis, D. ; Lincoln Lab., MIT, Lexington, MA, USA ; Shaw, G.

We introduce key concepts and issues including the effects of atmospheric propagation upon the data, spectral variability, mixed pixels, and the distinction between classification and detection algorithms. Detection algorithms for full pixel targets are developed using the likelihood ratio approach. Subpixel target detection, which is more challenging due to background interference, is pursued using both statistical and subspace models for the description of spectral variability. Finally, we provide some results which illustrate the performance of some detection algorithms using real hyperspectral imaging (HSI) data. Furthermore, we illustrate the potential deviation of HSI data from normality and point to some distributions that may serve in the development of algorithms with better or more robust performance. We therefore focus on detection algorithms that assume multivariate normal distribution models for HSI data

Published in:

Signal Processing Magazine, IEEE  (Volume:19 ,  Issue: 1 )

Date of Publication:

Jan 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.