By Topic

A unified rate-distortion analysis framework for transform coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhihai He ; Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA ; Mitra, S.K.

In our previous work, we have developed a rate-distortion (R-D) modeling framework for H.263 video coding by introducing the new concepts of characteristic rate curves and rate curve decomposition. In this paper, we further show it is a unified R-D analysis framework for all typical image/video transform coding systems, such as embedded zero-tree wavelet (EZW), set partitioning in hierarchical trees (SPIHT) and JPEG image coding; MPEG-2, H.263, and MPEG-4 video coding. Based on this framework, a unified R-D estimation and control algorithm is proposed for all typical transform coding systems. We have also provided a theoretical justification for the unique properties of the characteristic rate curves. A linear rate regulation scheme is designed to further improve the estimation accuracy and robustness, as well as to reduce the computational complexity of the R-D estimation algorithm. Our extensive experimental results show that with the proposed algorithm, we can accurately estimate the R-D functions and robustly control the output bit rate or picture quality of the image/video encoder

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:11 ,  Issue: 12 )