By Topic

Performance engineering and topological design of metro WDM optical networks using computer simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Antoniades, N. ; Photonics Res. & Test Center, Corning Inc, Somerset, NJ, USA ; Boskovic, A. ; Tomkos, I. ; Madamopoulos, N.
more authors

This paper demonstrates the use of computer simulation for topological design and performance engineering of transparent wavelength-division multiplexing metropolitan-area networks. Engineering of these networks involves the study of various transport-layer impairments such as amplifier noise, component ripple, chirp/dispersion, optical crosstalk, waveform distortion due to filter concatenation, fiber nonlinearities, and polarization effects. A computer simulation methodology composed of three main simulation steps is derived and implemented. This methodology obtains performance estimations by applying efficient wavelength-domain simulations on the entire network topology, followed by time-/frequency-domain simulations on selected paths of the network and finally Q-budgeting on an identified worst case path. The above technique provides an efficient tool for topological design and network performance engineering. Accurate simulation models are presented for each of the performance impairments, and the computer simulation methodology is used for the design and engineering of a number of actual metro network architectures

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:20 ,  Issue: 1 )