By Topic

Analysis of crosstalk between finite-length microstrip lines: FDTD approach and circuit-concept modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fengchao Xiao ; Dept. of Inf. & Commun. Eng., Univ. of Electro-Commun., Tokyo, Japan ; Weikun Liu ; Yoshio Kami

Two approaches, one based on the circuit concept and the other based on field theory, are used to model the crosstalk between two microstrip lines of finite length and arbitrary orientation. In the circuit-concept modeling, a set of equations for the line voltages and currents has been derived from a modified telegrapher's equation. A four-port network expression is resultantly obtained by solving the equations, thus the crosstalk can be predicted by applying terminal conditions to the network expression. On the other hand, the extended finite-difference time-domain (FDTD) method has been used to model the terminal resistors and the feeding resistive voltage source in the crosstalk analysis. Several physical models have been fabricated and experiments performed. The calculated results are compared to measurements. In our experiment, for microstrip lines of finite length and arbitrary orientation, there are short line-sections or vias at each of the four ports, which should be incorporated into the crosstalk analysis. This effect has been investigated numerically and experimentally

Published in:

IEEE Transactions on Electromagnetic Compatibility  (Volume:43 ,  Issue: 4 )