By Topic

EMI mitigation with multilayer power-bus stacks and via stitching of reference planes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Xiaoning Ye ; Dept. of Electr. & Comput. Eng., Missouri Univ., Rolla, MO, USA ; Hockanson, D.M. ; Min Li ; Yong Ren
more authors

General methods for reducing printed circuit board (PCB) emissions over a broad band of high frequencies are necessary to meet EMI requirements, as processors become faster and more powerful. One mechanism by which EMI can be coupled off a PCB or multichip module (MCM) structure is from high-frequency fringing electric fields on the DC power and reference planes at the substrate periphery. An approach for EMI mitigation by stitching multiple ground planes together along the periphery of multilayer PCB power-bus stacks with closely spaced vias is reported and quantified in this paper. Power-bus noise induced EMI and coupling from the board edges is the major concern herein. The EMI at 3 m for different via stitch spacing and layer thickness is modeled with the finite-difference time domain (FDTD) method. Design curves and an empirical equation are extracted from a parametric study to summarize the variation of the radiated EMI as a function of layer thickness and stitch spacing

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:43 ,  Issue: 4 )