By Topic

DC power-bus modeling and design with a mixed-potential integral-equation formulation and circuit extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun Fan ; Electromagn. Compatibility Lab., Missouri Univ., Rolla, MO, USA ; Drewniak, J.L. ; Hao Shi ; Knighten, J.L.

The application of a circuit extraction approach based on a mixed-potential integral equation formulation (CEMPIE) for DC power-bus modeling in high-speed digital designs is detailed. Agreement with measurements demonstrates the effectiveness of the approach. Dielectric losses are included into the calculation of the Green's functions, and thus, incorporated into the rigorous first principles formulation. A SPICE model is then extracted from the discretized integral equation. A quasistatic approximation is used for the Green's functions to keep the extracted circuit elements frequency independent. Previous work has established a necessary meshing criterion in order to ensure accuracy for a given substrate thickness and dielectric constant to a desired frequency. Several power-bus design issues, such as surface mount decoupling and power-plane segmentation, were investigated using the modeling approach. The results and discussions illustrate the application of the method to DC power-bus design for printed circuit and multi-chip module substrates

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:43 ,  Issue: 4 )