By Topic

End-to-end congestion control for the Internet: delays and stability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Johari, R. ; Stat. Lab., Cambridge Univ., UK ; Tan, D.K.H.

Under the assumption that queueing delays will eventually become small relative to propagation delays, we derive stability results for a fluid flow model of end-to-end Internet congestion control. The theoretical results of the paper are intended to be decentralized and locally implemented: each end system needs knowledge only of its own round-trip delay. Criteria for local stability and rate of convergence are completely characterized for a single resource, single user system. Stability criteria are also described for networks where all users share the same round-trip delay. Numerical experiments investigate extensions to more general networks. Through simulations, we are able to evaluate the relative importance of queueing delays and propagation delays on network stability. Finally, we suggest how these results may be used to design network resources

Published in:

Networking, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 6 )