By Topic

Robust least mean square adaptive FIR filter algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Z. Banjac ; Inst. of Appl. Math. & Electron., Belgrade, Serbia ; B. Kovacevic ; M. Veinovic ; M. Milosavljevic

The authors propose a new robust adaptive FIR filter algorithm for system identification applications based on a statistical approach named the M estimation. The proposed robust least mean square algorithm differs from the conventional one by the insertion of a suitably chosen nonlinear transformation of the prediction residuals. The effect of nonlinearity is to assign less weight to a small portion of large residuals so that the impulsive noise in the desired filter response will not greatly influence the final parameter estimates. The convergence of the parameter estimates is established theoretically using the ordinary differential equation approach. The feasibility of the approach is demonstrated with simulations

Published in:

IEE Proceedings - Vision, Image and Signal Processing  (Volume:148 ,  Issue: 5 )