By Topic

Online unsupervised learning of hidden Markov models for adaptive speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chien, J.-T. ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan

A novel framework of an online unsupervised learning algorithm is presented to flexibly adapt the existing speaker-independent hidden Markov models (HMMs) to nonstationary environments induced by varying speakers, transmission channels, ambient noises, etc. The quasi-Bayes (QB) estimate is applied to incrementally obtain word sequence and adaptation parameters for adjusting HMMs when a block of unlabelled data is enrolled. The underlying statistics of a nonstationary environment can be successively traced according to the newest enrolment data. To improve the QB estimate, the adaptive initial hyperparameters are employed in the beginning session of online learning. These hyperparameters are estimated from a cluster of training speakers closest to the test environment. Additionally, a selection process is developed to select reliable parameters from a list of candidates for unsupervised learning. A set of reliability assessment criteria is explored for selection. In a series of speaker adaptation experiments, the effectiveness of the proposed method is confirmed and it is found that using the adaptive initial hyperparameters in online learning and the multiple assessments in parameter selection can improve the recognition performance

Published in:

Vision, Image and Signal Processing, IEE Proceedings -  (Volume:148 ,  Issue: 5 )