By Topic

Robust two degree-of-freedom add-on controller design for automatic steering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guvenc, B.A. ; Dept. of Mech. Eng., Istanbul Tech. Univ., Turkey ; Guvenc, L.

A robust 2-DOF add-on controller design based on the disturbance observer is presented in this paper for improved performance in vehicle automatic steering. The application example is the benchmark problem on automatic steering of a city bus with large variations in mass and speed and for which the reference maneuvers and specifications are available in the literature. The analytical formulation of the compensator is presented, followed by evaluation and demonstration of the enhanced model regulation and disturbance rejection properties achieved by its use. Improved steering dynamics can be achieved using yaw rate feedback without the need for a yaw rate sensor. Noting that the steering angle rate actuator saturation forms a major limitation of performance, especially in the presence of the integrating actuator used in the city bus example, the performance enhancement due to the disturbance observer-based add-on compensator is investigated in the presence of actuator saturation. Finally, a disturbance feedforward-based add-on compensator is also presented for well-defined reference trajectories like the entering a bus stop bay maneuver, enabling preview

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:10 ,  Issue: 1 )