Cart (Loading....) | Create Account
Close category search window
 

Outliers in process modeling and identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Pearson, R.K. ; Inst. fur Automatik, Eidgenossische Tech. Hochschule, Zurich, Switzerland

Model-based control strategies like model predictive control (MPC) require models of process dynamics accurate enough that the resulting controllers perform adequately in practice. Often, these models are obtained by fitting convenient model structures (e.g., linear finite impulse response (FIR) models, linear pole-zero models, nonlinear Hammerstein or Wiener models, etc.) to observed input-output data. Real measurement data records frequently contain "outliers" or "anomalous data points," which can badly degrade the results of an otherwise reasonable empirical model identification procedure. This paper considers some real datasets containing outliers, examines the influence of outliers on linear and nonlinear system identification, and discusses the problems of outlier detection and data cleaning. Although no single strategy is universally applicable, the Hampel filter described here is often extremely effective in practice

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:10 ,  Issue: 1 )

Date of Publication:

Jan 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.