Cart (Loading....) | Create Account
Close category search window
 

Control law design for haptic interfaces to virtual reality

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Adams, R.J. ; Dept. of Electr. Eng., Washington Univ., Seattle, WA, USA ; Hannaford, B.

The goal of control law design for haptic displays is to provide a safe and stable user interface while maximizing the operator's sense of kinesthetic immersion in a virtual environment. This paper outlines a control design approach which stabilizes a haptic interface when coupled to a broad class of human operators and virtual environments. Two-port absolute stability criteria are used to develop explicit control law design bounds for two different haptic display implementations: the impedance display and admittance display. The strengths and weaknesses of each approach are illustrated through numerical and experimental results for a three degree-of-freedom device. The example highlights the ability of the proposed design procedure to handle some of the more difficult problems in control law synthesis for haptics, including structural flexibility and noncollocation of sensors and actuators

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:10 ,  Issue: 1 )

Date of Publication:

Jan 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.