By Topic

A novel analytical approach to the evaluation of the impact of fiber parametric gain on the bit error rate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bosco, G. ; Dipt. di Elettronica, Politecnico di Torino, Italy ; Carena, A. ; Curri, V. ; Gaudino, R.
more authors

We present in this paper a novel accurate method to analyze the performance of an optical link where the amplified spontaneous emission noise, enhanced by a fiber nonlinear phenomenon called parametric gain, is the limiting factor. Our method allows us to compute the exact error probability given a generic noise spectral density at the input of a direct detection optical receiver, using arbitrary optical and electrical filters. We compare our results with those predicted using the standard Gaussian technique (based on the Q factor), showing that this approximation may lead to significant errors. Our method is then used to evaluate the impact of parametric gain on a realistic long-haul multiwavelength link operating at 10 Gb/s, showing both the system limitation imposed by this phenomenon and the inaccuracy of the Q factor method

Published in:

Communications, IEEE Transactions on  (Volume:49 ,  Issue: 12 )