By Topic

Dielectric constant measurement of thin films using goniometric terahertz time-domain spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Li, Ming ; Phys. Dept., Rensselaer Polytech. Inst., Troy, NY, USA ; Fortin, J. ; Kim, J.Y. ; Fox, G.
more authors

Goniometric time-domain spectroscopy (GTDS), employing an ultrashort electromagnetic (EM) pulse technique, has been developed for measuring the dielectric constant of thin films in a broad band of gigahertz to terahertz. An ultrafast optoelectronic system, including an emitter and a detector unit, is constructed with a θ-2θ goniometer. A silicon wafer was analyzed as the reference substrate material. A sharp π phase-shift of the reflected EM wave was observed at the Brewster angle of 73.5° for a bare silicon wafer. The phase shift for a film on the Si substrate is relatively smooth due to its two surfaces' providing a complex reflectance. The dielectric constant of the film on Si, related with angular dependency of the phase shift, can be extracted by means of fitting the curve or measuring slope of the curve near the Brewster angle. The measured dielectric constants of FLARE, TiOx, and PZT film are reported

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:7 ,  Issue: 4 )