Cart (Loading....) | Create Account
Close category search window
 

Power losses in steel pipe delivering very large currents

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
McGee, B.C.W. ; McMillan-McGee Corp., Calgary, Alta., Canada ; Vermeulen, Fred E.

This paper presents a finite difference time domain solution for the electromagnetic fields in ferromagnetic conducting steel pipes of the type used to deliver large currents for in situ heating of heavy oil reservoirs and for in situ environmental decontamination. A method is described whereby a single measured hysteresis loop can be used to deduce the family of hysteresis loops that governs the variable magnetic behavior throughout the pipe wall. Hysteresis and eddy current losses are calculated, and it is shown that hysteresis effects greatly alter the eddy current distribution and can more than triple the total power losses in the steel pipe when compared to the power losses that would be present if hysteresis effects are ignored and magnetic permeability is assumed constant

Published in:

Power Delivery, IEEE Transactions on  (Volume:17 ,  Issue: 1 )

Date of Publication:

Jan 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.