By Topic

Framework for modeling software reliability, using various testing-efforts and fault-detection rates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sy-Yen Kuo ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Chin-Yu Huang ; Lyu, M.R.

This paper proposes a new scheme for constructing software reliability growth models (SRGM) based on a nonhomogeneous Poisson process (NHPP). The main focus is to provide an efficient parametric decomposition method for software reliability modeling, which considers both testing efforts and fault detection rates (FDR). In general, the software fault detection/removal mechanisms depend on previously detected/removed faults and on how testing efforts are used. From practical field studies, it is likely that we can estimate the testing efforts consumption pattern and predict the trends of FDR. A set of time-variable, testing-effort-based FDR models were developed that have the inherent flexibility of capturing a wide range of possible fault detection trends: increasing, decreasing, and constant. This scheme has a flexible structure and can model a wide spectrum of software development environments, considering various testing efforts. The paper describes the FDR, which can be obtained from historical records of previous releases or other similar software projects, and incorporates the related testing activities into this new modeling approach. The applicability of our model and the related parametric decomposition methods are demonstrated through several real data sets from various software projects. The evaluation results show that the proposed framework to incorporate testing efforts and FDR for SRGM has a fairly accurate prediction capability and it depicts the real-life situation more faithfully. This technique can be applied to wide range of software systems

Published in:

Reliability, IEEE Transactions on  (Volume:50 ,  Issue: 3 )