By Topic

Splitting-based importance-sampling algorithm for fast simulation of Markov reliability models with general repair-policies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Juneja, S. ; Indian Inst. of Technol., Delhi, India ; Shahabuddin, P.

Markov chains with small transition probabilities occur while modeling the reliability of systems where the individual components are highly reliable and quickly repairable. Complex inter-component dependencies can exist and the state space involved can be huge, making these models analytically and numerically intractable. Naive simulation is also difficult because the event of interest (system failure) is rare, so that a prohibitively large amount of computation is needed to obtain samples of these events. An earlier paper (Juneja et al., 2001) proposed an importance sampling scheme that provides large efficiency increases over naive simulation for a very general class of models including reliability models with general repair policies such as deferred and group repairs. However, there is a statistical penalty associated with this scheme when the corresponding Markov chain has high probability cycles as may be the case with reliability models with general repair policies. This paper develops a splitting-based importance-sampling technique that avoids this statistical penalty by splitting paths at high probability cycles and thus achieves bounded relative-error in a stronger sense than in previous attempts

Published in:

Reliability, IEEE Transactions on  (Volume:50 ,  Issue: 3 )