Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Microcavity-enhanced surface-emitted second-harmonic generation for ultrafast all-optical signal processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ulmer, T.G. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Hanna, M. ; Washburn, B.R. ; Ralph, S.E.
more authors

By incorporating an integrated microcavity into an optical waveguide structure with vertical quasi-phase-matching, we have realized surface-emitted second-harmonic generation devices that significantly enhance the conversion efficiency for optical pulses in the picosecond and sub-picosecond regimes. We demonstrate both theoretically and experimentally that nonlinear interactions involving short optical pulses can be enhanced by a microcavity, even when the resonance width is substantially narrower than the spectral content of the pulse. The resulting enhancement enables practical signal processing functions such as ultrafast optical time-division demultiplexing at 1.55 μm in multilayer AlGaAs structures

Published in:

Quantum Electronics, IEEE Journal of  (Volume:38 ,  Issue: 1 )