Cart (Loading....) | Create Account
Close category search window

Iterative algorithms for solution of large sparse systems of linear equations on hypercubes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Aykanat, C. ; Dept. of Comput. & Inf. Sci., Bilkent Univ., Ankara, Turkey ; Ozguner, F. ; Ercal, F. ; Sadayappan, P.

Finite-element discretization produces linear equations in the form Ax=b, where A is large, sparse, and banded with proper ordering of the variables x. The solution of such equations on distributed-memory message-passing multiprocessors implementing the hypercube topology is addressed. Iterative algorithms based on the conjugate gradient method are developed for hypercubes designed for coarse-grained parallelism. The communication requirements of different schemes for mapping finite-element meshes onto the processors of a hypercube are analyzed with respect to the effect of communication parameters of the architecture. Experimental results for a 16-node Intel 80386-based iPSC/2 hypercube are presented and discussed

Published in:

Computers, IEEE Transactions on  (Volume:37 ,  Issue: 12 )

Date of Publication:

Dec 1988

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.