By Topic

Architecture-based semantic evolution: a study of remotely controlled embedded systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
L. Chung ; Dept. of Comput. Sci., Texas Univ., Dallas, TX, USA ; N. Subramanian

Evolution of a software system is a natural process. In many systems evolution occurs during the working phase of their lifecycles. Such systems need to be designed to evolve, i.e., adaptable. Semantically adaptable systems are of particular interest to industry as such systems adapt themselves to environmental change with little or no intervention from their developers. Research in embedded systems is now becoming widespread but developing semantically adaptable embedded systems presents challenges of its own. Embedded systems usually have a restricted hardware configuration, hence techniques developed for other types of systems cannot be directly applied to embedded systems. This paper briefly presents the work done in semantic adaptation of embedded systems, using remotely controlled embedded systems as an application. In this domain, an embedded system is connected to an external controller via a communication link such as ethernet, serial, radio frequency, etc., and receives commands from, and sends responses to, the external controller. Techniques for semantic evolution in this application domain give a glimpse of the complexity involved in tackling the problem of semantic evolution in embedded systems. The techniques developed in this paper were validated by applying them in a real embedded system - a test instrument used for testing cell phones

Published in:

Software Maintenance, 2001. Proceedings. IEEE International Conference on

Date of Conference: