By Topic

Constraint satisfaction on dynamic environments by the means of coevolutionary genetic algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Handa, H. ; Dept. of Inf. Technol., Okayama Univ., Japan ; Katai, O. ; Konishi, T. ; Baba, M.

We discuss adaptability of evolutionary computations in dynamic environments. We introduce two classes of dynamic environments which are utilizing the notion of constraint satisfaction problems: changeover and gradation. The changeover environment is a problem class which consists of a sequence of the constraint networks with the same nature. On the other hand, the gradation environment is a problem class which consists of a sequence of the constraint networks such that the sequence is associated with two constraint networks, i. e., initial and target, and all constraint networks in the sequence metamorphosis from the initial constraint network to the target constraint network. We compare coevolutionary genetic algorithms with SGA in computational simulations. Experimental results on the above dynamic environments confirm us the effectiveness of our approach, i.e., coevolutionary genetic algorithm

Published in:

Industrial Electronics Society, 2000. IECON 2000. 26th Annual Confjerence of the IEEE  (Volume:4 )

Date of Conference: