By Topic

An analog front-end chip set employing an electro-optical mixed design on SPICE for 5-Gb/s/ch parallel optical interconnection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

A chip set composed of a laser-diode driver (LDD) and an optical receiver (RCV), which incorporates a full 2D (reshape, regenerate) function, has been developed by using silicon bipolar technology for a four-channel 5-Gb/s parallel optical transceiver. An electro-optical mixed design on SPICE of the LDD and the LD is accomplished by describing the rate equations of the LD as an electrical circuit. This design accommodates easy connectivity of the LDD chip to the LD in the optical transmitter module without the need for adjustment of the optical waveform. A pseudobalanced transimpedance amplifier (TIA) and feedforward automatic decision threshold control (ATC) in the RCV minimize the number of off-chip bypass capacitors, eliminate the need for any off-chip coupling capacitors, and keep crosstalk less than -50 dB and low cutoff frequency less than 80 kHz. A prototype parallel optical transmitter module and a prototype receiver module, based on the chip set, demonstrated asynchronous four-channel 5-Gb/s operation. The chip set has a throughput of 20 Gb/s with a power dissipation of 1.3 W at a 3.3-V supply

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:36 ,  Issue: 12 )