Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Comparison of worst case errors in linear and neural network approximation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kurkova, V. ; Inst. of Comput. Sci., Acad. of Sci. of the Czech Republic, Prague, Czech Republic ; Sanguineti, M.

Sets of multivariable functions are described for which worst case errors in linear approximation are larger than those in approximation by neural networks. A theoretical framework for such a description is developed in the context of nonlinear approximation by fixed versus variable basis functions. Comparisons of approximation rates are formulated in terms of certain norms tailored to sets of basis functions. The results are applied to perceptron networks

Published in:

Information Theory, IEEE Transactions on  (Volume:48 ,  Issue: 1 )