By Topic

Powerful and flexible fuzzy algorithm for nonlinear dynamic system identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lo Schiavo, A. ; Dipt. di Ingegneria dell''Informazione, Seconda Universita degli Studi di Napoli, Aversa, Italy ; Luciano, A.M.

A new powerful and flexible fuzzy algorithm for nonlinear dynamic system identification is presented. It is based on the identification of the derivative of the system state, instead of the future system state. The membership functions of the underlying static fuzzy model are two-sided Gaussian functions and the learning algorithm is a hybrid-nested routine based on least-squares, quasi-Newton and simplex optimization methods. Moreover, a simple clustering algorithm based on an additional higher level fuzzy model is proposed. The application to the identification of the Mackey-Glass chaotic time series is presented and compared with previous results in terms of maximum error and nondimensional error index. Finally, the application to a test nonlinear dynamic system is presented to show the capabilities of the clustering algorithm. The obtained results show that the proposed algorithm can find wide application in practical problems, such as in nonlinear electronic circuit design

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:9 ,  Issue: 6 )