Cart (Loading....) | Create Account
Close category search window
 

Flat-top response in one-dimensional magnetic photonic bandgap structures with Faraday rotation enhancement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Levy, M. ; Dept. of Mater. Sci. & Eng., Michigan Technol. Univ., Houghton, MI, USA ; Yang, H.C. ; Steel, M.J. ; Fujita, J.

The transmission and Faraday rotation characteristics of one-dimensional photonic crystals in cerium-substituted yttrium iron garnet (Ce:YIG) with multiple defects in the optical bandgap are studied theoretically at λ = 1.55 μm. It is found that the interdefect spacing can be adjusted to yield a flat top response, with close to 100% transmission and 45° Faraday rotation, for film structures as thin as 30 to 35 μm. This is better than a three-fold reduction in thickness compared to the best Ce:YIG films for comparable rotations, and may allow a considerable reduction in size in manufactured optical isolators. Transmission bands as wide as 7 nm are predicted, which constitutes a considerable improvement over previously reported bandwidths for magnetic photonic crystals. Diffraction across the structure corresponds to a longer optical path length than the thickness of the film, calling for the use of guided optics to minimize insertion losses in integrated devices. The basis for the flat-top transmission in ferrite photonic crystals is presented and discussed

Published in:

Lightwave Technology, Journal of  (Volume:19 ,  Issue: 12 )

Date of Publication:

Dec 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.