By Topic

Low-loss analog and digital micromachined impedance tuners at the Ka-band

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hong-Teuk Kim ; Sch. of Electr. Eng., Seoul Nat. Univ., South Korea ; Sanghwa Jung ; Kyungteh Kang ; Jae-Hyoung Park
more authors

Presents new types of analog and digital micromachined impedance tuners. Analog impedance tuners using resonant unit cells realized by tunable micromachined capacitors showed a wide tuning range equivalent to almost two quadrants of the Smith chart with a maximum voltage standing-wave ratio (VSWR) of 21.2 at the Ka-band. Frequency variability is also provided through the use of J-inverters with tunable capacitors. Also presented is a digital micromachined tuner, where the short-circuited shunt stubs are loaded with microelectromechanical system (MEMS) capacitive switches. The electrical length of the stub and the overall impedance of the tuner are thus controlled according to the switching states of the MEMS capacitors. The digital tuner presented impedance ranges suitable for load impedances of the RF power transistors and showed a high maximum VSWR of 32.3. Compared with the state-of-the art tuners using field-effect transistors, micromachined tuners of this paper show superior VSWR ranges as well as wide impedance ranges. Micromachined tuners are very promising for low-loss tuning of the monolithic circuits as well as for accurate noise and power characterization

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:49 ,  Issue: 12 )