Cart (Loading....) | Create Account
Close category search window
 

Dynamic multiresolution route optimization for autonomous aircraft

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We describe an approach for dynamic route optimization for autonomous high-performance aircraft. A multiresolution representation scheme is presented that uses B-spline basis functions of different support and at different locations along the trajectory, parametrized by a dimensionless parameter. A multirate receding horizon problem is formulated as an example of online multiresolution optimization under feedback. The underlying optimization problem is solved with an anytime evolutionary computing algorithm. By selecting particular basis function coefficients as the optimization variables, computing resources can flexibly be devoted to those regions of the trajectory requiring most attention. A simulation scenario is presented

Published in:

Intelligent Control, 2001. (ISIC '01). Proceedings of the 2001 IEEE International Symposium on

Date of Conference:

2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.