By Topic

Speculative Versioning Cache

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
T. N. Vijaykumar ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; S. Gopal ; J. E. Smith ; G. Sohi

Dependences among loads and stores whose addresses are unknown hinder the extraction of instruction level parallelism during the execution of a sequential program. Such ambiguous memory dependences can be overcome by memory dependence speculation which enables a load or store to be speculatively executed before the addresses of all preceding loads and stores are known. Furthermore, multiple speculative stores to a memory location create multiple speculative versions of the location. Program order among the speculative versions must be tracked to maintain sequential semantics. A previously proposed approach, the Address Resolution Buffer (ARB) uses a centralized buffer to support speculative versions. Our proposal, called the Speculative Versioning Cache (SVC), uses distributed caches to eliminate the latency and bandwidth problems of the ARB. The SVC conceptually unifies cache coherence and speculative versioning by using an organization similar to snooping bus-based coherent caches. Our evaluation for the Multiscalar architecture shows that hit latency is an important factor affecting performance and private cache solutions trade-off hit rate for hit latency

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:12 ,  Issue: 12 )