By Topic

Extended fast fixed-order RLS adaptive filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Merched ; Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA ; A. H. Sayed

The existing derivations of conventional fast RLS adaptive filters are intrinsically dependent on the shift structure in the input regression vectors. This structure arises when a tapped-delay line (FIR) filter is used as a modeling filter. We show, unlike what original derivations may suggest, that fast fixed-order RLS adaptive algorithms are not limited to FIR filter structures. We show that fast recursions in both explicit and array forms exist for more general data structures, such as orthonormally based models. One of the benefits of working with orthonormal bases is that fewer parameters can be used to model long impulse responses

Published in:

IEEE Transactions on Signal Processing  (Volume:49 ,  Issue: 12 )