By Topic

Robust Wigner distribution with application to the instantaneous frequency estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Djurovic, I. ; Electr. Eng. Dept., Univ. of Montenegro, Yugoslavia ; Stankovic, L.

The Wigner distribution (WD) produces highly concentrated time-frequency (TF) representation of nonstationary signals. It may be used as an efficient signal analysis tool, including the cases of frequency modulated signals corrupted with the Gaussian noise. In some applications, a significant amount of impulse noise is present. Then, the WD fails to produce satisfactory results. The robust periodogram has been introduced for spectral estimation of this kind of noisy signals. It can produce good concentration for pure harmonic signals. However, it is not so efficient in the cases of signals with rapidly varying frequency. This is the motivation for introducing the robust WD. It is a reliable TF representation tool for wide class of nonstationary signals corrupted with impulse noise. This distribution produces good accuracy of the instantaneous frequency (IF) estimation. Using the Huber (1981) loss function, a generalization of the WD is presented. It includes both the standard and the robust WD as special cases. This distribution can be used for TF analysis of signals corrupted with a mixture of impulse and Gaussian noise. The presented theory is illustrated on examples, including applications on the IF estimation and time-varying filtering of signals corrupted with a mixture of the Gaussian and impulse noise. The case study analysis of the IF estimators' accuracy, based on the standard and the robust WD forms, is performed. In order to improve the IF estimation, a median filter is applied on the obtained IF estimate

Published in:

Signal Processing, IEEE Transactions on  (Volume:49 ,  Issue: 12 )