By Topic

Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
N. Kasabov ; Dept. of Inf. Sci., Otago Univ., Dunedin, New Zealand

This paper introduces evolving fuzzy neural networks (EFuNNs) as a means for the implementation of the evolving connectionist systems (ECOS) paradigm that is aimed at building online, adaptive intelligent systems that have both their structure and functionality evolving in time. EFuNNs evolve their structure and parameter values through incremental, hybrid supervised/unsupervised, online learning. They can accommodate new input data, including new features, new classes, etc., through local element tuning. New connections and new neurons are created during the operation of the system. EFuNNs can learn spatial-temporal sequences in an adaptive way through one pass learning and automatically adapt their parameter values as they operate. Fuzzy or crisp rules can be inserted and extracted at any time of the EFuNN operation. The characteristics of EFuNNs are illustrated on several case study data sets for time series prediction and spoken word classification. Their performance is compared with traditional connectionist methods and systems. The applicability of EFuNNs as general purpose online learning machines, what concerns systems that learn from large databases, life-long learning systems, and online adaptive systems in different areas of engineering are discussed

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:31 ,  Issue: 6 )