Cart (Loading....) | Create Account
Close category search window
 

Some novel classifiers designed using prototypes extracted by a new scheme based on self-organizing feature map

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Laha, A. ; Nat. Inst. of Manage. Calcutta, India ; Pal, N.R.

We propose two new comprehensive schemes for designing prototype-based classifiers. The scheme addresses all major issues (number of prototypes, generation of prototypes, and utilization of the prototypes) involved in the design of a prototype-based classifier. First we use Kohonen's self-organizing feature map (SOFM) algorithm to produce a minimum number (equal to the number of classes) of initial prototypes. Then we use a dynamic prototype generation and tuning algorithm (DYNAGEN) involving merging, splitting, deleting, and retraining of the prototypes to generate an adequate number of useful prototypes. These prototypes are used to design a "1 nearest multiple prototype (1-NMP)" classifier. Though the classifier performs quite well, it cannot reasonably deal with large variation of variance among the data from different classes. To overcome this deficiency we design a "1 most similar prototype (1-MSP)" classifier. We use the prototypes generated by the SOFM-based DYNAGEN algorithm and associate with each of them a zone of influence. A norm (Euclidean)-induced similarity measure is used for this. The prototypes and their zones of influence are fine-tuned by minimizing an error function. Both classifiers are trained and tested using several data sets, and a consistent improvement in performance of the latter over the former has been observed. We also compared our classifiers with some benchmark results available in the literature

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:31 ,  Issue: 6 )

Date of Publication:

Dec 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.