By Topic

Neural network based modeling of a large steam turbine-generator rotor body parameters from on-line disturbance data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bora Karayaka, H. ; Ohio State Univ., Columbus, OH, USA ; Keyhani, A. ; Heydt, G.T. ; Agrawal, B.L.
more authors

A novel technique to estimate and model rotor-body parameters of a large steam turbine-generator from real time disturbance data is presented. For each set of disturbance data collected at different operating conditions, the rotor body parameters of the generator are estimated using an output error method (OEM). Artificial neural network (ANN) based estimators are later used to model the nonlinearities in the estimated parameters based on the generator operating conditions. The developed ANN models are then validated with measurements not used in the training procedure. The performance of estimated parameters is also validated with extensive simulations and compared against the manufacturer values

Published in:

Energy Conversion, IEEE Transactions on  (Volume:16 ,  Issue: 4 )