By Topic

An efficient graph representation for arithmetic circuit verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yirng-An Chen ; Novas Software Inc., San Jose, CA, USA ; Bryant, R.E.

In this paper, we propose a new data structure called multiplicative power hybrid decision diagrams (*PHDDs) to provide a compact representation for functions that map Boolean vectors into integer or floating-point (FP) values. The size of the graph to represent the IEEE FP encoding is linear with the word size. The complexity of FP multiplication grows linearly with the word size. The complexity of FP addition grows exponentially with the size of the exponent part, but linearly with the size of the mantissa part. We applied *PHDDs to verify integer multipliers and FP multipliers before the rounding stage, based on a hierarchical verification approach. For integer multipliers, our results are at least six times faster than binary moment diagrams. Previous attempts at verifying FP multipliers required manual intervention, but we verified FP multipliers before the rounding stage automatically

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:20 ,  Issue: 12 )