Cart (Loading....) | Create Account
Close category search window

Hybrid fuzzy proportional-integral plus conventional derivative control of linear and nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Meng Joo Er ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Ya Lei Sun

This paper presents a new approach toward the optimal design of a hybrid proportional-integral-derivative (PID) controller applicable for controlling linear as well as nonlinear systems using genetic algorithms (GAs). The proposed hybrid PID controller is derived by replacing the conventional PI controller by a two-input normalized linear fuzzy logic controller (FLC) and executing the conventional D controller in an incremental form. The salient features of the proposed controller are as follows: (1) the linearly defined FLC can generate nonlinear output so that high nonlinearities of complex systems can be handled; (2) only one well-defined linear fuzzy control space is required for both linear and nonlinear systems; (3) optimal tuning of the controller gains is carried out by using a GA; and (4) it is simple and easy to implement. Simulation results on a temperature control system (linear system) and a missile model (nonlinear system) demonstrate the effectiveness and robustness of the proposed controller

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:48 ,  Issue: 6 )

Date of Publication:

Dec 2001

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.